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Abstract
This work considers the connectivity between large and small scales in
boundary-layer turbulence by formalizing the modulation effect of the small
scales by the large in terms of the pointwise Hölder condition for the small
scales. We re-investigate a previously published dataset from this perspective
and are able to characterize the coupling effectively using the (cross-)corre-
lative relations between the large scale velocity and the small scale Hölder
exponents. The nature of this coupling varies as a function of dimensionless
distance from the wall based on inner-scaling, y+, as well as on the boundary-
layer height, δ. In terms of the fundamental change in the sign of the coupling
between large and small scales, the critical height appears to be y 1000~+ .
Below this height, small scale structures are associated with (and occur earlier
than) maxima in the large scale velocity. Above this height, while the lag is
similar in magnitude, the small scale structures are associated with minima in
the large scale velocity. To consider these results further, we introduce a
modified quadrant analysis and show that it is the coupling to the large scale
low velocity state that is critical for the dynamics.
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1. Introduction

An improved understanding of high Reynolds number, boundary-layer turbulence is essential
for both control purposes and developing enhanced numerical modeling methods for near-
wall regions. Recent work in this field has focused on three inter-related areas: the formation
of near-wall coherent flow structures (Kline et al 1967, Christensen and Adrian 2001); the
nature of very large scale motions (VLSMs) in the outer part of the boundary-layer (Adrian
et al 2000, Tomkins and Adrian 2003, Hutchins and Marusic 2007a); and, the coupling
between these (Ganapathisubramani et al 2005, Hutchins and Marusic 2007b). See Jimé-
nez (2012) for a recent review of relevant work in these areas. The idea that the effect of large
scale structures extends to the wall goes back at least as far as Townsend (1976). More recent
work has shown that an important means by which coupling takes place is in the amplitude
modulation of the small scales by the large (Hutchins and Marusic 2007b, Ganapathisu-
bramani et al 2012), and this has resulted in models for near-wall behavior based on
knowledge of the VLSMs in the outer region (Marusic et al 2010).

In this study, rather than examining two-point statistics (near and far from the wall), we
focus on the relation between large and small scales at a given height from the wall, y, and
how this relation varies with y. The primary novelty in this work is an analysis of the
amplitude modulation in terms of Hölder exponents. This means that we can move away from
analyses predicated on discretized variables for the modulation, such as the windowed var-
iance of the small scale velocity, to consider a continuous measure of the small scale mod-
ulation—its Hölder condition. Hence, with this change, it becomes straightforward to use
standard techniques to examine the relation between the large-scale velocity and the small-
scale modulation. We then study this as a function of distance from the wall, leading to a
characterization of the phase relations between the large scale velocity and the Hölder
exponents for the small scale intermittency. This permits an analysis of boundary-layer
structure in terms of quadrants defined by the fluctuating velocity at large scales, and the
Hölder exponents at small scales.

Hence, the plan for this paper is to review definitional information on Hölder exponents
in section 2, describe the experimental facility and the data employed in this study, which
have been published previously (Hutchins et al 2011, Ganapathisubramani et al 2012), and to
then give details of the signal pre-processing methods and the metrics used to characterize the
relations between small and large scales in section 3. The results are then presented in
section 4 and it is shown that the Hölder exponent approach is a natural way to elucidate the
characteristics of boundary-layer velocity time series as a function of vertical coordinate, y.

2. Pointwise Hölder exponents and their estimation

Landau’s objection to Kolmogorov’s original scaling ‘law’ for the moments of the velocity
increments, or structure functions, in turbulence (Kolmogorov 1941, Frisch and Parisi 1985)
resulted in modified scalings that permitted intermittent behavior within the formulation
(Kolmogorov 1962, She and Leveque 1994). This intermittency was subsequently interpreted
as a consequence of the presence of vortical structures in the flow (Frisch et al 1978). A
formal means of characterizing intermittency in turbulence was then introduced in terms of
the multifractality of the flow field, or the sets of Hölder exponents present in the measured
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field (Meneveau and Sreenivasan 1991, Muzy et al 1991). More correctly, we are interested in
pointwise Hölder exponents, ua of velocity time series data, rather than examining oscillating
singularities (Nicolleau and Vassilicos 1999), which requires the use of local Hölder expo-
nents (Kolwankar and Lévy Vehel 2002, Herbin and Lévy Vehel 2009, Barrière et al 2012).

The general definition of ua proceeds from consideration of the differentiability of a
function relative to polynomial approximations about a location of interest, t0. However, for
turbulence in the inertial regime, where the mean, u

1

3
⟨ ⟩a = (Kolmogorov 1941), then
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u t u t
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where tD is some interval about t0. A rapid method for evaluating ua is based on a log–log
regression of the signal oscillations, Ot t0D against tD (Kolwankar and Lévy Vehel 2002):

O ax u in um m 2t t t t t t t, , , ,t t t t t0 0 0 0 0
( ) ( ) ( )( ) ( )= -D Î -D ¼ +D Î -D ¼ +D

and in the evaluation of the ua , tD is distributed logarithmically (over limits from close to the
Kolmogorov scale to inertial scales in this study to separate small and large scale behaviors).
As explained by Peltier and Levy Véhel (1995), our approach can be linked to the study of
windowed variance ( u

2s ) approaches because
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where N ( )¼ is the normal distribution. The left-hand side of equation (3) then shows why
equation (2) is an appropriate means to estimate the Hölder exponent: the log–log regression
probes the 0tD  limit that gives ua . This approach has been shown to be at least as precise
as alternative, wavelet-based methods (Keylock 2010), and has been used to infer the
existence of ‘active periods’ of shear stress exertion and sediment mobility from single-point
time series in environmental/geophysical fluid mechanics studies (Keylock 2008, 2009).
Because we are interested in deriving pointwise Hölder exponents, tu ( )a for 400 time series,
each consisting of N 1.8 106= ´ values, a rapid approach to Hölder exponent evaluation is
of significant benefit, meaning that equation (2) is adopted in this study.

2.1. Pointwise Hölder exponents, multifractality and structure functions

There has been a long history in turbulence of studying the moments of velocity increments,
u u x u xx x( ) ( )= + D -D , (von Karman and Howarth 1938, Kolmogorov 1941). Given a
power-law scaling between the nth moment u x

n
D and xD with exponent nx , a monofractal

signal will exhibit a linear scaling between the moment order, n, and nx (Kolmogorov 1941),
while a multifractal turbulence signal will exhibit a convex structure function relation (Frisch
and Parisi 1985). Multifractality may also be considered directly from an analysis of xu ( )a .
For each possible tu ( )a , we define the singularity spectrum, D u( )a as the set of values for ua
for which the set S ua is not empty. The Frisch and Parisi conjecture states that

D nmin 1 . 4u
n

u n( ) ( ) ( )a a x= - +

Following Jaffard (1997), in a window, x∣ ∣D about a singularity of order ua , one finds that

u x u . 5x x
n

x
nu∣ ( ) ∣ ∣ ∣ ( )+ D - » D a

Hence, for the second moment, n=2, and assuming u u⟨ ⟩a a= everywhere, the Kolmogorov
2/3 law is recovered exactly when 1 3u⟨ ⟩a = as stated above.
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With a dimension to these singularities of D u( )a it follows that there are approximately
x

D u∣ ∣ ( )D a- boxes with a volume x
m∣ ∣D , where m is the dimension of the space over which the

function is defined. Hence, the contribution of this singularity to the integral used to evaluate
the structure function u x

n⟨∣ ∣ ⟩D is approximately x
n m Du u∣ ∣ ( )D a a+ - . The largest contributor to the

integral will be given by the smallest exponent. Thus

u , 6x
n

x n⟨∣ ∣ ⟩ ∣ ∣ ( )µ D x
D

n D mmin . 7n
n

u u( ( ) ) ( )x a a= - +

That is, the structure function scaling exponent, nx and the pointwise Hölder exponents, ua ,
are related via the Legendre transform. More typically, we know nx and are trying to estimate
D u( )a . Thus, we need to take the inverse Legendre transform, which for a m=1 dimensional
signal yields equation (4). While the velocity increments are defined over xD , such quantities
are not readily accessible using traditional instrumentation such as hot wires. Hence, spatial
derivatives are usually obtained from time series using Taylor’s hypothesis. While modified
variants of this hypothesis have been formulated for flows where the action of large scale
structures and, hence, local accelerations may be significant (Pinton and Labbé 1994,
Kahalerras et al 2007), in this study we prefer to avoid any ambiguity that may result from the
choice of transformation and work with time series (hence, ut and tu ( )a ).

3. Methods

3.1. Experimental details

The data for this study came from an experiment at the high Reynolds number boundary layer
wind tunnel at the University of Melbourne, Australia. The working section is 27 m long, with
a 2 1 m´ cross-section. Additional details on this facility may be found in Nickels et al
(2005, 2007). A summary of the experimental conditions is given in table 1 and the basic
unconditional statistics (e.g. mean and rms velocity profiles) are shown in Hutchins
et al (2011). The shear velocity is denoted by Ut and use of the (+) superscript indicates a
viscous, wall-unit scaling such that t tU2 n= t

+ and y yUt n=+ . The two Reynolds numbers
quoted are the Kárman number, e UR d n=t t and the momentum thickness number,

e UR q n=q ¥ . To give a sense of the behavior of the Taylor Reynolds numbers, values at
y 30, 200, 400{ }~+ , i.e. top of the buffer layer, top of the inner layer and halfway into the
outer layer, were eR 200, 280~l and 380, respectively.

Data were acquired at 60 kHz, twenty one meters into the working section. For the inflow
condition used here (U 20.33=¥ ms−1) the variation in the pressure coefficient along the
working section was±0.007. Data were obtained from a hot-wire probe with an etched sensor
length of 0.5 mm and wire diameter of 2.5 μm to give a length to diameter ratio of 200
(Ligrani and Bradshaw 1987). The hot wire operated in constant temperature mode and was
mounted 220 mm upstream of a traversable mount with an aerofoil profile to minimize flow
disturbance (Ganapathisubramani et al 2012). The vertical traverse was precise to 0.1 μm and

Table 1. The experimental conditions for this study.

U∞ Ut δ Ret Req t+ min. y, (y+) max. y, (y d)
ms−1 ms−1 m (–) (–) (–) mm, (–) mm, (–)

20.33 0.665 0.326 14200 36980 0.47 0.2 (10.67) 450 (1.38)
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40 logarithmically distributed vertical traverse positions were adopted in the range
y0.24 450 mm< < , with a boundary-layer thickness of 0.326 m (y 14 500=+ ). The

sampling period at each position was 30 s and ten replicates were obtained at each sampling
position.

3.2. Signal preprocessing

To study the interaction between small and large scales in these data Ganapathisubramani
et al (2012) made use of a spectral filter so that the scale separation was precise in frequency.
Previous studies using a box filter (Chung and McKeon 2010, Guala et al 2011) result in a
separation that is precise in time–space rather than frequency. To avoid these two extreme
cases, here we filter with a Daubechies least asymmetric wavelet filter with L=8 non-
vanishing moments (Daubechies 1992), implemented within a maximal overlap discrete
wavelet framework (MODWT) (Percival and Walden 2000, Keylock 2007). We reconstruct
the high frequency variability from wavelet scales, j 1, ,6= ¼ , and the large scales from

j J8   , j Î -. As the equivalent filter width at scale j is given by
L L2 1 1 1j

j( ) ( )= - ´ - + , j=6, 7, and 8 are equivalent to t 208=+ , 418 and 839,
respectively, where t tU2 n= t

+ , ν is the kinematic viscosity, and Ut is obtained from a
Clauser fit with 0.41k = and intercept A=5.0 (Clauser 1956). In terms of outer scaling,
tU 0.46d =¥ , 0.93, and 1.86 for j 6, 7= , and 8, respectively, where U∞ is the free stream
velocity and δ is the boundary layer thickness. Based on the vertical structure of the energy
spectra for u shown in figure 1 of Ganapathisubramani et al (2012), tU 1.86d =¥ is close to
an optimal separation of large and small scales for these data, while the j 6 criterion for the
small scales ensures a clear scale separation. Reconstruction from the wavelet coefficients by
setting scales j 6 to zero for the small scales, and j 8 to zero for the large scales, and
performing the inverse MODWT leads to the small and large scale velocity signals, u t( )d< ,
and u t( )d> , respectively. The pointwise Hölder exponents of the former are then denoted
by t( )ad< .

An example short segment of u t( )d> (black line), u t( )d< (gray line in the upper panel) and
u( )ad< (gray line in the lower panel) is given in figure 1. Each is expressed in terms of a z-

Figure 1. Time series of u t( )d>
+ (black), and u t( )d<

+ (gray) in panel (a), and u t( )d>
+

(black), and t˜ ( )ad<
+ (gray) in panel (b) for data from y 10.64=+ . Values are expressed

as normalized z-scores with data for the fine scales displaced by –5 for clarity. The
origin for the timescale is arbitrary and the vertical dotted line at t 2000~ -+

highlights a feature identified in the text.
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score, e.g. z u u u u( ) ( ⟨ ⟩) ( )s= -d d d d> > > > , where the braces indicate a temporal mean value
and ( )s ¼ is the standard deviation. It is clear that the larger scale behavior is modulating the
amplitude of u t( )d< in the top panel as highlighted by the vertical dotted line at t 2000~ -+

where the low values for ud> result in a reduced local variance for ud<. This modulation is
clearly captured by the dramatic increase in values for t( )ad< in the lower panel at this point in
time. The increase in ud> towards t 0=+ results in an increasing amplitude of the ud< signal
and a concomitant decrease in ad<.

3.3. Analysis of filtered and unfiltered αδ< tð Þ values

Given t( )ad< , one can either consider its relation directly to u t( )d> , or acknowledge that the
impact of the difference in intrinsic timescales will introduce a decorrelation bias that will
have a deleterious impact on the results. This then implies that t( )ad< is low-pass filtered to
the same cut-off frequency as u t( )d> before analysis. In the rest of this paper, we denote this
filtered α series by a t( )d< . Such a filtering removes the decorrelation bias, but also removes
the noise associated with attempting to evaluate pointwise Hölder exponents for a discretely
sampled dataset. Our approach is to primarily work with a t( )d< , but to demonstrate at the start
of the paper that the use of t( )ad< gives qualitatively similar results, although with a reduced
magnitude for the associated metric owing to both the decorrelation from timescale differ-
ences, and greater noise in the unfiltered data.

3.4. Metrics for large and small scale coupling

Given ad< or ad< contains the information on the amplitude modulation, a simple metric for
the coupling between large and small scales is the linear correlation between ud> and ad<, or
ad<, termed, for example, R u ,( )ad d> < . The linear correlation is the covariance of the two
variables normalized by the product of their standard deviations. To detect a time-lagged
coupling, we apply the Hilbert transform to ud> and the Hölder series to evaluate the
instantaneous phase of each signal and, thus, the phase difference. We define the analytical
signal of a time varying, mean-subtracted, generic flow variable, w t( )¢ , as

w t w t Ai ei w( ) ˆ ( )¢ + ¢ = f , where w tˆ ( )¢ is the Hilbert transform of w¢

w
w t

t t
t

1
p.v. d , 8ˆ ( ) ( )òp

¢ =
¢
--¥

+¥ 



p.v. is the Cauchy principal value and t is the dummy integration variable. The phase is given

by t t tanw w
w

w
1( ) ( )

ˆ
f fº =¢ - ¢

¢ , where we drop the prime for a fluctuating quantity for
notational simplicity. It then follows that R ,u( )f fa> < is the linear correlation between the
phases for u ¢d> and a¢d<. The phase difference is then given by t t tu u, ( ) ( ) ( )f f fD = -a a> < .
Because the phase is defined on the unit circle, its mean value cannot be found using standard
arithmetic averaging. Therefore, the mean phase coherence is found by averaging the angular
distribution of phases on the unit circle in the complex plane (Kreuz et al 2007):

N

1
e , 9

t

N
t

1

i u,( ) ( )( )åg a = f

D =

D a

where N is the number of samples in the time series, and tD is the discrete time index for each
sample. The distribution of γ is not uniform and to check that the value obtained is
statistically meaningful we adopt a simple surrogate data approach. Such a process is
implemented by phase-shuffling one of the time series before the phase differences are
calculated. The mean value of γ for each of the surrogate series, Sg , is denoted by S⟨ ⟩g , and is
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used to normalize the value of γ from the data, where we obtain S⟨ ⟩g over ten surrogate series:

0 if

1
if

. 10
S

S

S
S

( )
⟨ ⟩

⟨ ⟩
⟨ ⟩

⟨ ⟩
( )

⎧
⎨⎪
⎩⎪

* g a
g g

g g
g

g g
=

<
-
-

An alternative way to explore properties of tu, ( )fD a is to calculate its relative entropy,
Er. We divide the interval from 2p- to 2p+ into b ,200= ¼ equal interval bins and obtain
the empirical probabilities from p b n b N( ) ( )=fD , where n(b) is the number of values for

u,fD a in a given interval. The relative entropy is then given by

E
p plog

log
. 11u

i

b

b

r ,
1

1
( ) ( )

å
fD =a

f f= D D

Hence, E 1ur ,( )fD >a indicates greater order than for an equivalent uniform distribution and,
thus, a tendency for preferential values for the phase difference between the large scale
velocity and small scale Hölder exponents to arise. Thus, overall, we have four metrics for
both ad< and ad<, e.g.: R u ,( )ad d> < , R ,u( )f fa> < , ( )*g a , and, E ur ,( )fD a .

3.5. Velocity-intermittency quadrant analysis

We also make use of a velocity-intermittency quadrant analysis to gain a greater insight into
this coupled behavior, although it is applied in a different fashion to the original formulation
in Keylock et al (2012). In that work, the intention was to examine any dependence in the
intermittency time series on the velocity, where it is classically assumed, e.g. Kolmo-
gorov (1962), that no such dependence exists (although, see Hosokawa 2007 and Stresing and
Peinke 2010). A simple method was developed to examine this dependence based on
renormalized quantities and the well-known quadrant method in boundary-layer fluid
mechanics (Lu and Willmarth 1973, Bogard and Tiederman 1986). Hence, the joint dis-
tribution function for z(u) and z u( )a was examined as a function of a threshold ‘hole size’,
with a significant event for a given H one where z u z Hu∣ ( ) ( )∣ a . By increasing H from 0 to
a maximum given by associated sampling theory for the Gaussian distribution for a given N
and counting the proportion of events in each quadrant, pQ(H), different type of flow (jets,
wakes, boundary layers near and far from the wall) could be discriminated readily. Further
work highlighted that the flow over bed roughness elements (mobile and fixed) generated a
velocity-intermittency structure different to that for any of the more idealized flow types
(Keylock et al 2013, 2014).

In this study, we modify this technique to determine the relation between u t( )d> and
a t( )d< , i.e. the coupled behavior of large scale velocity and filtered small scale intermittency.
The four quadrants are defined according to table 2, with an example diagram shown in

Table 2. The definition of velocity-intermittency quadrants in terms of the signs of u ¢d>
and a ¢d<.

Quadrant number (Q) gn us ( )¢d> gns ( )a¢d<

1 + +
2 – +
3 – –

4 + –
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figure 2. This makes use of the data in figure 1 and, consequently, is based on t( )ad< rather
than a t( )d< . It is clear that in this case, as H increases, Q=2 and Q=4 are increasingly
dominant, with this being particularly the case for the former quadrant. This is made explicit
in table 3, which gives the proportion of data exceeding the H thresholds shown in figure 2.
Hence, for these data near the wall (y 10.67=+ ) there is a negative correlation between u t( )d>
and t( )ad< , meaning that for H 2 there are essentially two states that arise 97% of the time:
a slower than average large scale velocity coupled to a smoother than average small scale
velocity signal (Q= 2), and a faster than average large scale velocity coupled to a rougher
than average small scale velocity signal (Q= 4).

It was found previously that because of the approximate linear variation of pQ with H for
a given quadrant, p Hd dQ could be used as a summary measure for the behavior of the flow
in each quadrant (Keylock et al 2014). This approximation is used here to show how velocity-
intermittency response varies as a function of y+.

4. Results

4.1. Summary measures of large and small scale coupling

Figure 3 shows the average over the ten replicates (indicated by angle braces) of the coupling
metrics defined in section 3 as a function of y+, using the unfiltered Hölder exponents. The
two synchronization methods are shown in panels (b) and (d), and both show a strongly
expressed peak in the coupling at y 104~+ . However, while Er⟨ ⟩a is approximately constant
for y10 3000< <+ , ⟨ ⟩*g a halves in value over the same range. The results for the two
correlation metrics are entirely consistent, with a move from negative to positive correlations
as y+ increases until a maximum is reached just before y 1d = . In both cases, the zero-
crossing for the correlation coefficient takes place close to y 300=+ , values increase to

Figure 2. An example velocity-intermittency quadrant diagram for ud> and ad< using
the data from figure 1. Contours for H 1, 2, 3{ }Î are shown as gray lines.

Table 3. The proportion of the data exceeding the thresholds shown in figure 2 for each
quadrant. Results are re-normalized such that the total proportion always sums to 1.0.

Quadrant number (Q) H=0 H=1 H=2 H=3

1 0.157 0.052 0.012 0.002
2 0.314 0.456 0.538 0.575
3 0.207 0.073 0.017 0.004
4 0.322 0.419 0.433 0.420
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y 104~+ and then, outside the boundary layer, the correlation drops to zero. Thus, near the
wall, high values for ud> result in high local variation for ud< (low ad< and negative cor-
relation), with the opposite the case for y 300+ .

Figure 3. Mean over ten replicates of four different metrics of the coupling between
u t( )d> and t( )ad< as a function of y+. The zero-crossing of the two correlation metrics
is shown with dotted lines, while the vertical dashed line is at y 1d = .

Figure 4. Mean over ten replicates of four different metrics of the coupling between
u t( )d> and a t( )d< as a function of y+. The zero-crossing of the two correlation metrics is
shown with dotted lines, while the vertical dashed line is at y 1d = .
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Replacing t( )ad< by a t( )d< gives the results shown in figure 4, which are generally
consistent with those in figure 3. The magnitude of the negative correlations at y 10~+ is
three times greater than for t( )ad< , while the peak positive correlations at y 10 000=+ are
approximately twice as large, indicating the degree of decorrelation that results from the
analysis of time series with different intrinsic time scales. The zero-crossing of these corre-
lation coefficients is displaced to y 500~+ and a similar, rapid decay to zero correlation for
y 1d > is observed. Similarly to figure 3(b), a⟨ ⟩*g halves in value over y10 3000< <+ ,
attaining a minimum at the same position as before, before rapidly increasing to a peak close
to y 1d = . The major difference in the results is the inversion of the peak in E ar⟨ ⟩ at a similar
y+. It should be noted that the value for E ar⟨ ⟩ in this trough is still greater than that for the
peak in figure 3(d). However, this clear contrast to the result in figure 4(b) indicates a different
development in the shape of the PDF for u a,fD at y 10 000~+ relative to the phase syn-
chronization between u t( )d> and t( )ad< , which is explored further in section 4.3. Thus, for

y10 3000< <+ , E Ea u ar r ,⟨ ⟩ ⟨ ( )⟩fº D is approximately constant but the phase synchroni-
zation decreases. This can be contrasted to figures 3(b) and (d) where the decrease in ⟨ ⟩*g a
with y+ in this range is accompanied by an increase in Er⟨ ⟩a, with both attaining a local
maximum at y 10 000~+ .

4.2. Extending the correlative measures to cross-correlations

The assumption of zero lag in the correlations in figures 3(a) and 4(a) is a strong one and there
is some visual evidence for a lagged response in figure 1. To investigate this further, the
R u ,( )ad d> < values were generalized to a cross-correlation function, R u , , t( )a Dd d> <

+ over
all N2 1- lags, tD , expressed in wall units as Ut t

2 nD = D t
+ . Figure 5 shows the mean over

the ten replicates of the signed maximum absolute cross correlation and the lag to this
correlation. By way of example, for the unfiltered Hölder series, this is given by

gn R R gn R u t

R u

s s max , ,

max , , 12t

max max( ) ∣ ∣ ( ∣ ( )∣)
∣ ( )∣ ( )

a
a

´ = D
´ D

d d

d d

> <
+

> <
+

as well as the associated lag:

t R uarg max , , , 13
t

tmax ( ) ( )aD = Dd d
+

> <
+

where a positive lag indicates that a change in ad< leads ud>. Confidence limits at the 95%
level are placed on these results using the bootstrap procedure outlined in the appendix.
Insignificant values for tmaxD + based on the results in panel (a) are highlighted by solid
symbols in figure 5(b).

As in figures 3 and 4, the correlations reported in figure 5(a) change from negative to
positive with increasing y+, although the point of transition is now higher into the flow than
was the case in figure 3. It also occurs at a similar value of y+ for both the filtered and
unfiltered Hölder series. That this transition is very similar to that seen in figure 4 suggests
that filtering the Hölder series yields more physically interpretable results as there is a greatly
reduced dependence on tD +. This is borne out directly in figure 5(b), which shows t 0maxD ~+

for all y+ where the results are significant except for the data adjoining the region of no
significance, where the magnitude of the peak correlations is much reduced. The results in
figure 5(a) highlight a break in slope of the variation of the cross-correlation at y 100~+ ,
followed by a rapid decrease in correlation magnitude with height until y 1000~+ , which
was also evident in figures 4(a)–(c). A major difference between the results for
R u a t, ,( )Dd d> <

+ and R u t, ,( )a Dd d> <
+ in figure 5 is that for the former, significant positive
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correlations are associated with negative lags and vice versa (although the magnitudes of the
lags are small), while lags remain positive for R u t, ,( )a Dd d> <

+ .
What is of further note is that while the positive correlations in figures 3(a), 4(a), and 5(a)

attain a magnitude at high y+ that is not dissimilar to those near the wall, the phase

Figure 5. Mean over ten replicates of gn R Rs max max( ) ∣ ∣´ as a function of y+ (a), and
the time lag to this maximum, tmaxD + (b). Results shown with a diamond are for
R u t, ,( )a Dd d> <

+ , while those with a circle are for R u a t, ,( )Dd d> <
+ . The vertical,

dashed line shows y 1d = and the approximately horizontal lines in (a) are 95%
confidence intervals based on a bootstrapping of the R u ,( )ad d> < results. Results that
are insignificant in (b) based on those in (a) are highlighted by solid symbols.

Figure 6. Histograms of u a,fD at choices for y+ that have qualitatively different values

for a⟨ ⟩*g based on the results in figure 4. The dataset chosen is that closest to the
median value for *g between ud> and ad<.
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synchronizations in figures 3(c) and 4(c) exhibits a decrease with height (rather than a global
minimum close to the height of zero correlation). Hence, while linear measures of association
imply that the boundary-layer is as structured close to y 1d = as it is at the wall, a

*g indicates
that near-wall structure is more strongly expressed. We examine this qualitative difference
further by explicitly referring to the phase differences.

4.3. Distribution functions of the phase difference

The histograms for u a,fD are shown in figure 6 for five choices of y+ that exhibit differences
in their values for a⟨ ⟩*g according to the results in figure 4. The results at y 3000~+

correspond to the minimum for a⟨ ⟩*g and figure 6(d) shows that the distribution for u a,fD is
unimodal, centered close to zero phase difference and that the central peak does not contain a
particularly high proportion of the distribution’s mass. Hence, this is the result closest to that
obtained from random surrogate data, explaining the low value for a⟨ ⟩*g . In contrast, at
y 10 000~+ the greater kurtosis of the central mode is less attainable by random processes
and both a⟨ ⟩*g and R u a t, ,( )Dd d> <

+ are greater. Nearer the wall, the bimodal nature of the
histogram for u a,fD explains the decline in a⟨ ⟩*g with y+ despite similar magnitude values for
gnR Rs max max∣ ∣´ existing at y 10 000~+ and y 100~+ . For y 100>+ the right mode
moves towards 0u a,fD = and the left mode diminishes. Higher values for a⟨ ⟩*g for
y 100<+ are a consequence of a more defined mode in the left tail that could not be
mimicked by random surrogates. Hence, the change from negative to positive correlations
does not arise independently of the shape of the PDF for u a,fD meaning that the physical
explanation of the amplitude modulation of small scales by the large must also account for a
transition from a bimodal to an unimodal response.

The asymmetry in the near-wall peaks can be analysed further by conditioning p u a,( )fD
on the sign of a ¢d< or u ¢d>. For example, at y 12.6=+ , 55% of the distribution’s mass is in the
upper part ( 0u a,fD > ), but there is a clear difference between p gn as 0u a,( ∣ ( ) )fD ¢ >d< and
p gn as 0u a,( ∣ ( ) )fD ¢d< , with 59.5% of the mass of the former in the positive phase difference
region (figure 7(d)), compared to 51.2% for the latter (figure 7(c)). Interestingly, given the

Figure 7. Histograms of u a,fD at y 12.6=+ conditioned on the sign of u ¢d>, (a) and (b),
and the sign of a ¢d<, (c) and (d). The y-axis is expressed in terms of the full PDF
for u a,fD .
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negative correlations near the wall seen in figures 4 and 5, it is p gn us 0u a,( ∣ ( ) )fD ¢ >d> that
also preferentially contains the positive phase differences (58.9% in figure 7(b) compared to
51.1% for p gn us 0u a,( ∣ ( ) )fD ¢d> in figure 7(a)). Hence, there is a joint control on the phase
differences from the two variables that does not reflect their negative correlation at this height.
This demonstrates the relevance of velocity-intermittency quadrants for analysing this
phenomenon and the suitably conditioned variables over the signs of both quantities,
p gn u gn as , su a,[ ∣ ( ) ( )]fD ¢ ¢d d> < , are shown in figure 8. The normalization of the ordinate is
according to the proportion of the unconditioned p u a,( )fD so that it is clear that the quadrants

occupied the most are quadrant 2 (u a0, 0¢ < ¢ >d d> < ) and 4 (u a0, 0¢ > ¢ <d d> < ), which is
consistent with figure 2. This figure clarifies the potential confusion that results from com-
paring the correlation and the conditioning on single variables: quadrants 2 and 4 have a
similar bimodal response and although they are frequented less often, it is quadrants 1 and 3
that explain the differences seen in figure 7. During periods of relatively fast, smooth flow at
large scales (quadrant 1, figure 8(b)) a positive phase difference is twice as likely as a
negative, with all differences existing over a relatively narrow range of phases
( p u a,( )p f p- < D < ). Quadrant 3 exhibits an opposite response with both larger magnitude
phase differences and a peak negative phase difference twice as great as the peak positive
response. It was proposed by Marusic et al (2010) that the following model formulation could
be used to predict near-wall flow based on the large scale fluctuations

u y u y k u y k u y1 , 14P BL 1 2( ) ( )( ( )) ( ) ( )= + +d d
+ +

>
+

>
+

where all quantities are written in terms of wall units (+ superscript), the left-hand term is the
predicted velocity, uBL is the ‘universal’ signal at that height derived from the law-of-the-wall
or similar, and the k are coefficients representing the modulation effect, k1, and the
superposition of the large scale influences, k2. The results presented here suggest that a more
advanced variant of this model would consider the joint velocity-intermittency behavior of the
larger scales and constrain the modulation coefficient vector (for the various
gn u gn as , s( ) ( )d d> > combinations) with respect to each case.

Figure 8. Histograms of u a,fD at y 12.6=+ conditioned simultaneously on the sign of

u ¢d> and the sign of a ¢d<. The y-axis is expressed in terms of the full PDF for u a,fD .
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4.4. Velocity-intermittency quadrants

Given the relevance of the velocity-intermittency quadrants for examining the phase differ-
ence responses, we look more carefully at the quadrant occupany in this section by examining
the gradient of the proportional occupany, pQ, versus hole size, H, introduced by Keylock
et al (2014). The means over ten replicates for p Hd dQ as a function of y+ are shown in
figure 9. Quadrants Q1 and Q3 exhibit almost identical behavior, with a linear increase (on a
semi-log axis) in the strength of the negative slope for y+ less than 190 (indicated by a
vertical, dashed–dotted line), i.e. in the inner wall region. This is also the value at which the
sign for Q4 changes to positive. This quadrant has a stronger negative slope than Q1 and Q3

Figure 9. The mean over ten replicates of the scaling between quadrant proportional
occupany, pQ, and hole size, H, for the four quadrants defined according to Keylock
et al (2012). The black line shows the behavior for quadrant 2, while the black line with
triangles is quadrant 4. The gray line is quadrant 3 and the gray line with triangles is
quadrant 1. The inset shows more clearly where the slopes of p Hd dQ⟨ ⟩ change sign.

The horizontal dotted line is at p Hd d 0Q⟨ ⟩ = , while the vertical dashed and dashed–

dotted lines are at y 1d = and y 190=+ , respectively.

Figure 10. Mean over ten replicates of the variation of pQ with H in each of the four
quadrants at four choices for y+ selected on the basis of the results in figure 9.
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until y 80~+ . For y 190>+ the Q2 contribution decays towards a zero-crossing at
y 450~+ and then is approximately constant at p Hd d 0.04Q⟨ ⟩ ~ - , until y 6000~+ . In
general, for y250 5000< <+ there are no strong variations in the quadrant occupancy with
H, indicating a relatively stable velocity-intermittency relation at these heights.

Figure 10 shows the results at four elevations in greater detail to the p Hd dQ summary
measure in figure 9. The general patterns are in agreement with the above interpretation, with
the situation at y 174=+ similar to that at y 21=+ , but with less extreme slopes. In the
former, at large H, the limiting state is ∼70% occupancy in Q2 and ∼30% in Q4, while the
latter is close to 100% in Q2. In the mid-range of elevations, it is Q1 and Q3 that dominate in
this limit with about 35% occupancy, and Q2 and Q4 contributing 15% each. However, at
y 9034 s=+ one approaches 100% occupancy in Q3 at large H. Hence, the manner in which
the extreme flow states modulate the small scales changes with elevation:

• Near the wall, the key control is u 0¢ <d> , which exerts a strong control on the a 0¢ >d< ,
i.e. smooth regions of the flow where strain rates or vorticity are low.

• At y 174=+ this control is present, as well as the consistent, but opposite, control of
u 0¢ >d> on a 0.¢ <d<

• Further from the wall, where Reynolds stresses are lower and structures developed
autogenically at the wall rarely penetrate, the control is inverted from that at y 174=+

with u 0¢ >d> affecting a 0¢ >d< and the lower velocity regions, u 0¢ <d> , producing the
regions of large fluctuations, a 0¢ <d< and

• Nearer the boundary-layer height, the velocity control is again dominated by u 0¢ <d> , but
it controls a 0¢ <d< this time.

This result may be summarized as a negative velocity-intermittency correlation existing
for y 190<+ , and a positive one at higher elevations, with the refinement that very close to,
or very far from the wall, it is one quadrant that dominates this relation.

5. Discussion

That the Q2 dominance near the wall decays markedly from y 190>+ is coincident with the
observation that attached hairpin vortices rarely penetrate beyond this height (Ganapathisu-
bramani et al 2003). This implies that positive Q2 is related to these near-wall vortical
processes, i.e. regions of reduced variance below the inertial scale are coupled to slower than
average large-scale velocities, and this result dominates in the limit of large H. Single
quadrant dominance in the results both near the wall (Q2) and near the top of the boundary-
layer (Q3) implies that a correlation-based analysis is not sufficient: there is a sign change in
the correlation between u ¢d> and a 0¢ >d< with height, but it is the u 0¢ <d> states that drive this
relation. It is clear from the phase analysis that the nature of the coupling near and far from the
wall is very different, with a marked bimodality to the phase relations near the wall and a
unimodal, zero phase lag response as one approaches z 1d = . Figure 8 shows how the
bimodality is linked to the quadrants with the positive lags associated with Q1, and the
negative with Q3. Hence, although Q2 dominates near-wall response, other quadrants play an
important part in shaping the detail of the coupling between large-scale velocity and small
scale intermittency.

Assuming that, following Frisch et al (1978) regions with 0a <d< indicate the passage
of flow structure with a high vorticity, then near the bed, regions of limited vorticity at the
small scales are coupled to a subsequent large scale velocity minimum that induces a large-
scale strain. Hence, regions with weak vorticity are not passive in turbulence (Tsinober
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et al 1997) and there is a suggestion here that the change from Q2 to Q3 dominance reflects a
shift from small-scale energy dissipation driven by strain production near the wall to
enstrophy production higher into the flow. This postulated behavior may be interpreted with
respect to the geometric properties of the velocity gradient tensor (Vieillefosse 1984, Perry
and Chong 1987, Ooi et al 1999)

A
u x u x u x
u x u x u x
u x u x u x

. 15ij

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( )
⎛

⎝
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⎞

⎠
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¶ ¶ ¶ ¶ ¶ ¶
¶ ¶ ¶ ¶ ¶ ¶
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The characteristic equation for the velocity gradient tensor is
A e Pe Qe R 0ij i i i

3 2= + + + = , where ei are the eigenvalues of A. While incompressibility
means that P 0= , Q and R and their associated evolution equations are often studied

e eQ
1

4
2S , 16ij i j

2 2( ) ( )åd w= º -

e S S S SR
1

3

1

4
, 17i ij jk ik i j ij ( ) w w= º - -

where i i
2w w w= and the strain, Sij, rotation, ijW and vorticity, ijw are given by

S A A , 18ij ij ij
T ( )= +

A A , 19ij ij ij
T ( )W = -

, 20i ijk jk ( )w = W

where ijk is the Levi-Civita symbol. It was shown by Naso et al (2006) using a DNS of a
shear flow, the Vieillefosse tail (Vieillefosse 1984) (i.e. the R 0> , Q 0< flow state with
high strain production and low vorticity) grew proportionally more than other regions of the
Q−R plane as dimensionless shear rate increased, i.e. the extreme cases of very high strain
production and low vorticity became more likely. Given the high shear rates near the wall in a
boundary layer, this is entirely consistent with our postulated predominance of a R 0> ,
Q 0< flow state for y 190<+ that is coupled to velocity minima at large scales. As this
region of the Q−R plane is associated with small scale energy dissipation (Cantwell 1993),
we may link the Reynolds stress profile in a boundary layer with our Q2 dominance and the
R 0> , Q 0< flow state. Hence, the velocity-intermittency quadrant method, although based
on pointwise velocity time series, permits interpretation of the results that are consistent with
numerical results where Aij has been resolved.

6. Conclusion

Using a time series of pointwise Hölder exponents to characterize small scale turbulence
provides an alternative means of studying the coupling between large and small scales in a
zero-pressure turbulent boundary layer. Because this is a continuous measure with close
theoretical links to structure function analysis and studies of turbulence multifractality, it has a
logical basis for application in turbulence research. We have then applied correlative and
phase-based metrics to characterize the relation between the large and small scale flow
behavior. By modifying a recently developed velocity-intermittency quadrant analysis (Key-
lock et al 2012) such that the velocity axis is the low-pass filtered velocity and the inter-
mittency is that detected at small scales, it has been shown that the crucial changes to the large

Fluid Dyn. Res. 48 (2016) 021405 C J Keylock et al

16



and small scale coupling are driven by the times when the velocity at large scales is less than
average. The reason that the correlation between large and small scales changes sign at
y 300~+ is because of a change from an association between low velocities at large scales and
less intermittent conditions at small scales, to one where the large scale, low velocities are
linked to more intermittent conditions. Hence, it is the low velocity states both near and far
from the wall that drive the relation between large and small scales, and the change in sign of
the correlation as a consequence. The nature of the phase relations underpinning the correlation
is also complicated, with bimodality in the phase differences near the wall and unimodality
closer to the top of the boundary-layer. These results suggest modifications to the equation
proposed by Marusic et al (2010) for characterizing near wall flow by modifying the boundary-
layer profile to account for the modulation of the small scales by the large. Conditioning of
such a model based on the velocity-intermittency quadrants has the potential to lead to more
accurate results and this dimension of the present study will be explored further in future work.

Assuming that low values for the pointwise Hölder exponents relate to the presence of
vortical flow structures (Frisch et al 1978, Keylock 2008), we have detected a shift from large
scale strain being coupled to low enstrophy production at small scales near the wall, to large
scale strain relating to the presence of vortical flow structures (and high enstrophy production)
at small scales further from the wall. Thus, although this work has been based purely on the
analysis of velocity time series at a point, the changing nature of the coupling between scales
as a function of height appears to be consistent with numerical analyses of enstrophy and
strain production in a boundary-layer. That the joint analysis of large scale velocity and small
scale Hölder exponents can provide similar insights provides an encouraging basis for further
work using these tools.
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Appendix. Bootstrapped confidence intervals for cross-correlation analysis

An approach to bootstrapping confidence intervals on the maximum absolute cross-correla-
tion between ud> and ad< is useful because conventional hypothesis testing for cross-cor-
relation assumes, as a null hypothesis, no autocorrelation in the underlying time series, giving
a confidence interval proportional to the square root of the sample size, N and, thus, rapidly
tending to zero. The approach followed here is to form the bounds from the cross-correlation
of phase-randomized surrogate data that preserve the autocorrelative structure of each series,
according to

(i) Take the Fourier transform of u t u( ) ⟨ ⟩-d d> > and t( ) ⟨ ⟩a a-d d< < and store the
respective amplitudes, Au ( )w and A .( )wa

(ii) Choose a significance level, s, such that the exceedance probability for the maxima will
be s1 2.r = -

(iii) For each of S surrogate series:
(a) Randomly shuffle ud> and ad<, take the Fourier transform of each series and store the

random phases, u
˜ ( )f w , and ˜ ( )f wa , where the tilde indicates these are random

quantities.

Fluid Dyn. Res. 48 (2016) 021405 C J Keylock et al

17



(b) Take the inverse Fourier transform of A exp iu uf̃ and A exp if̃a a to yield phase-
randomized data, u t˜ ( )d> , and t .˜ ( )ad<

(c) Find the maximum and minimum of the cross-correlation, R u ,( ˜ ˜ )ad d> < , as a function
of lag, tD and add them to the vectors X and N, containing the maxima and minima,
respectively.

(iv) Fit a Generalized Extreme Value distribution to the S-element vectors X and N- and for
the given fits, evaluate the distribution functions for P X( ) and P N( )- at ρ. The bounds
are then given by R u P X,( ) ( ∣ )a r=d d

r
> < and R u P N, 1( ) ( ∣ )a r= - -d d

r
> <

- .

The use of a distribution function removes the explicit dependence on S, although clearly
the estimation improves as S  ¥. The results of a simulation study for a dataset at
y 690=+ for S 25, 50, 75, 100{ }Î are shown in figure A1 , where twenty estimates for
R u ,( )ad d

r
> < and R u , 1( )ad d

r
> <

- are produced for each choice of S, with 0.975r = . Given
that in this study, ten replicates were obtained at each value for y, a mean confidence limit can
be obtained and the relatively constant standard error here indicates that S=25 for each data
series is sufficient.
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